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Abstract. All classical equations of kinetic coefficients in physics give only the first response
to the external forces and fields. We have constructed new equations for kinetic coefficients,
with all responses of the fields and forces, by using the perturbation method, which, customarily,
was a mathematical tool for the approximate solution of the equations. Naturally, the recurrent
equations which were obtained lead to recurrent solutions, which were found by the Green’s
function technique. The exact analytical formulae, produced by this method, play the same
role for the calculations of kinetic coefficients as the Kirchhoff system of equations does for
conductivity. In the framework of this solution one has obtained the upper boundary for fields
when the solution is yet converged. We have considered the Hall and Seebeck coefficients and
the elastic moduli (Skal A S 1997 PhysicaA to be published), and suggested that all other
kinetic and transport coefficients may be rewritten in this way. On the basis of the formulae
obtained, numerical calculations of the Hall and Seebeck coefficients are presented. The new
universality classes for the Hall and Seebeck coefficients and the upper bond of the critical Hall
conductivity exponent for all orders of a magnetic field contributions are obtained.

1. Introduction

Much of our understanding of the physics of polycrystalline films, powder semiconductors
and composite media comes from the percolation theory. The interest in this problem
stems largely from the fact that percolation is, by far, the best understood type of
quenched disorder. The current through composite media depends on both the nature of the
inhomogeneities and their spatial arrangement. If there is some component of inhomogeneity
which is distributed spatially randomly, the electric current will flow by a percolation process
[2]. In the powdered semiconductors one can consider a power layer where the effective
resistivity of layers is dominated by the grain-to-grain contact resistances. If the value of
the contact resistance can take a range of values due to fluctuations in barrier height and/or
variations in the contact area, then the current will flow along paths that offer minimum
resistance. A variation of the barrier height will lead to a wide variation in contact resistance,
and the wider the range of contact resistance is the more significant the percolation will be.
In the limit of a very wide range of contact resistances, the overall effective resistivity will
be determined by the critical resistance at the percolation threshold level. These treatments
derive expressions for kinetic coefficients of a composite material in terms of the properties
of its constituents.

The original effective medium theory [3] gives results which differ from the percolation
theory near the threshold, and therefore we will discuss the theoretical treatment of the Hall
effect and thermopower in percolation systems [1, 4]. Instead of linear-response properties
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to coupled fields, which lead to exact relations among kinetic coefficients [5], we adopt the
approximation [1, 4] of assuming that the local conductivity, the thermoconductivity and
the Young modules are zeroth-order quantities, while the Hall and the Seebeck coefficients
and the Poisson ratio are first-order quantities. However, the perturbation theory allows us
to obtain new recurrence equations with recurrent solutions for all orders of responses of
the Hall and Seebeck coefficients, the Poisson ratio for conductivity in a magnetic field, the
thermopower and elasticity of disordered systems.

Composite media have been around for a very long time, and it sometimes seems that
we already know everything about their physical property. In this paper we shall attempt to
show that there are some new classical equations for transport and kinetic coefficients, which
lead to recurrence solutions. We shall focus on three subareas, namely magnetotransport,
the thermopower and the elastic properties [1] of composite media, but we will suggest
that it can also be applied to other kinetic coefficients. We shall discuss problems which
are described by Laplacian or second-order finite difference operators, and generalize the
numerical-simulation scheme using our analytical results.

2. The phenomenological equation in a magnetic field

The theory of the behaviour of a classical electron gas in combined electric and magnetic
fields was developed by Gans [6], and was extended by Sommerfeld and Frank [7], Davis
[8] and Seitz [9]. On the basis of Lorentz’ transport theory, Gans [6] treated the case
in which the applied electric and magnetic fields are normal. He examined the results to
first order in the applied electrostatic field and to an arbitrary order in the magnetic field,
and found that he could sum the series corresponding to sums over various orders of the
magnetic field. Sommerfeld and Frank [7] subsequently obtained the same results but more
concisely, Davis [8] and Seitz [9] generalized Gans’ treatment of the problem for the case
in which the electric and magnetic fields are oriented randomly relative to one another. In
the approximation where the current varies linearly with the electrostatic field, and it varies
with the magnetic field, up to quadratic terms, they obtained

I = σE + αH [E ×H ] + βH 2[E ×H ]. (1)

This is the only high order of a magnetic field equation known in literature, and it
corresponds to our more complicated recurrence equation (9).

The existing theoretical discussion about composite materials is mostly limited to low-
density approximations, as pointed out in [10–12]. The experimental literature of this field
was given in [13–18].

In the effective medium theory the conductivity reaches zero at a volume fraction of
1
3 (this can be compared with the percolation threshold), but the effective Hall coefficient
never differs from the local Hall coefficient of the conducting componentR1 by more than
a factor of 2(Re = 2R1, R2/R1 7→ 1). Kirkpatrick suggested that the Hall coefficient
should be proportional to the inverse of the percolation probabilityRe(p) = P−1(p)R1.
This suggestion received great criticism because it implied that the dead ends occurring in
the infinite cluster contribute to the Hall coefficient even though they do not carry current
or appear on the surface of a sample. A picture, which seems unrealistic for customary
percolation, was explained by the starry sky model [4].

The difference between results of the effective-medium theory is often due to involving
the different averaging procedures. The difference between our results and the effective-
medium theory results lies in the fact that we have developed exact analytical formulae
for the mentioned kinetic coefficients, using the Green’s function technique. The formulae
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produced by this method play the same role for the calculations of kinetic coefficients as
the Kirchhoff system of equations does for conductivity, and therefore, the numerous errors
of the critical exponents calculations lie in the same error bar.

3. The new equations for conductivity in a magnetic field

An equation can be introduced for the current densityj(r) in disordered systems, whose
discontinuous scale is larger than the free path of the charge carriers, and whose free path
is larger than the cyclotron radius. In this case we can consider the local conductivityσ(r),
and the local Hall coefficientR(r) at each point of the sample. A new analytical result
is obtained for the perturbation theory of the current density in a magnetic field, whose
formula exactly corresponds with (2) to first order.

WhenH is small enough, the Hall current density can be represented as a vector product
λ(r) × E(r) whereE = −∇ϕ is an electric field andλ(r) is the local Hall conductivity.
The equation for the current density in such a system may be written as:

j(r) = σ(r)∇ϕ(r)+ σ−1(r)λ(r)× j(r) (2)

where λ(r) = σ 2(r)R(r)H represents a conductor in which the conductivity tensor is
isotropic and|λ(r)| � σ(r).

Consider a cubic sample with side lengthsLxm , m = 1, 2, 3 with an applied electric
field E along thexm-axis andϕm(r) denoting the electrical potential, andj

m
(r) being

the current density. In the presence of a weak magnetic field the Lorentz forceF 1 is
considered in the perturbation theory as the first-order response, whereas the Ohmic current
densityj

o
(r) is considered as a zeroth-order response of a magnetic field. As a first step

of the approximation, one obtains the Hall current densityj
1
(r), therefore the new, full

current density is equal toj(r) = j
o
(r) + j

1
(r), in addition to a new electrical potential

ϕ(r) = ϕo(r)+ ϕ1(r). As k step results, one obtains a new Lorentz forceFk ad infinitum.
The full current density and the full electrical potential can be described in powers ofH

(or λ(r)) as

j
m
(r) = j

0,m
(r)+ j

1,m
(r)+ · · · + j

k,m
(r) (3)

ϕm(r) = ϕ0,m(r)+ ϕ1,m(r)+ · · · + ϕk,m(r). (4)

For the boundary condition of the potential one obtains

ϕ0,m(r)r∈B = Exm (5)

ϕk,m(r)r∈B = 0 (6)

whereB is the boundary of the sample.
Now we must substitutej(r) from the right-hand side into the left-hand side of

equation (1). If one repeats this operationk times, one obtains the equation:

j(r) = σ(r)∇ϕ(r)+ σ(r)0λ(r)×∇ϕ(r)+ σ(r)−1× λ(r)× λ(r)×∇ϕ(r)
+σ(r)−(k−1)λ(r)× · · · × λ(r)×∇ϕ(r)+ · · · . (7)

Substituting (4) into (7) and separating the orders inλ(r) yields

j
0,m
(r) = σ(r)∇ϕ0(r)

j
1,m
(r) = σ(r)∇ϕ1(r)+ σ 0(r)λ(r)×∇ϕ0,m(r)

j
k,m
(r) = σ(r)∇ϕk(r)+ σ 0(r)λ(r)×∇ϕk−1,m(r)+ · · ·

+σ−(k−1)(r)λ(r)× · · · × λ(r)×∇ϕ0,m(r).

(8)
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The system of equations can be rewritten in a recurrent form for the projection of the
current density on then-axis:

jno,m(r) = σ(r)∇nϕ0,m(r)

jn1,m(r) = σ(r)∇nϕ1,m(r)+ σ−1(r)[λ(r)× j
0,m
(r)]n

jnk,m(r) = σ(r)∇nϕk,m(r)+ σ−1(r)[λ(r)× j
k−1,m

(r)]n.

(9)

This allows us to use the Green’s function to calculate (9) from the beginning, step by step.
Now we introduce the Green’s functionG(r, r ′) by the equation:

∇n(σ (r)∇nG(r, r ′)) = δ3(r − r ′) (10)

with the boundary condition:

G(r, r ′)r∈B = 0. (11)

Summation over repeated indices is implied. The Green’s function method can be applied
to a potential with zero boundary conditions. For this purpose one can introduce a new
potentialϕ′0,m(r) as:

ϕ′0,m(r) = ϕ0,m(r)− Exm ϕ′0,m(r)r∈B = 0. (12)

Since∇njn0,m(r) = 0, ∇n(σ (r)∇nϕ0,m(r)) = 0, this can be rewritten as:

∇n(σ (r)∇nϕ′0,m(r)) = −∇n(σ (r)∇n(Exm)). (13)

Using the Green’s function one can find forϕ′0,m(r) and simultaneously forϕ0,m(r),

ϕ0,m(r) = Exm + ϕ′0,m(r) = Exm +
∫
G(r, r ′)∇′n[σ(r ′)∇′n(Ex ′m)] dV

= Exm − E
∫
σ(r ′)∇′mG(r, r ′) dV ′ (14)

and since∇n(Exm) = Eδnm, also forjn0,m(r)

jn0,m(r) = σ(r)∇nϕ0,m(r) = Eσ(r)δnm + E
∫
σ(r)σ (r ′)∇n∇′mG(r, r ′) dV ′. (15)

For further application, the integral may be expressed in another form∫
σ(r)σ (r ′)∇n∇′mG(r, r ′) dV ′ = E−1jn0,m(r)− σ(r)δnm. (16)

This formula allows integrating multiplication of the gradient of the Green’s function at two
local conductivities. The result is the total current to zeroth order.

Since∇njnk,m(r) = 0 then from (9):

∇n[σ(r)∇nϕk,m(r)] = −∇n{σ−1(r)[λ(r)× j
k−1,m

(r)]n}

ϕk,m(r) = −
∫
V ′
σ−1(r ′)[λ(r ′)× j

k−1,m
(r ′)]s∇′sG(r, r ′) dV ′

(17)

and then by using (16):∫
σ(r)∇nϕk,m(r) dV =

∫
V

σ−2(r)[λ(r)× j
k−1,m

(r)]s dV
∫
V ′
σ(r)σ (r ′)∇n∇′sG(r, r ′) dV ′

=
∫

[E−1j s0,n(r)− σ(r)δns ]s [λ(r)× j
k−1,m

(r)]sσ
−2(r) dV. (18)
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One can calculate the current〈jnk,m(r)〉:∫
jnk,m(r) dV =

∫
σ(r)∇nϕk,m(r) dV +

∫
V

σ−1(r)[λ(r)× j
k−1,m

(r)]n dV

= E−1
∫
σ−2(r)j s0,n[λ(r)× jk−1,m

(r)]s dV −
∫
σ−1(r)[λ(r)× j

k−1,m
(r)]n dV

+
∫
σ−1(r)[λ(r)× j

k−1,m
(r)]n dV. (19)

The last two terms cancel and for〈jnk,m(r)〉 one obtains:

〈jnk,m(r)〉 =
∫
jnk,m(r) dV = E−1

∫
V

σ−2(r)j0,n(r)[λ(r)× j
k−1,m

(r)] dV. (20)

This recurrence formula allows us to calculate each subsequent current from its previous
value. For example, for effective magnetoresistance one can write

1ρm,n(p) =
∫
V
j

0,n
(r)[H × j

1,n
(r)]R(r) dV

σ eff
n (p)σ

eff
m (p)E

2
. (21)

It is interesting to compare Bergman’s [19] formula (5) for the magnetoconductivity
with our result (21). The only difference is that Bergman did not complete his calculation
because he did not use a formula like (16) for integrating the Green’s function.

Now one can rewrite the result in a common integral equation form

〈jnm(r)− jn0,m(r)〉 =
〈 ∞∑
k=2

jnk−1,m(r)

〉
= E−1

∫
V

(
j

0,n
(r)

[
H ×

∞∑
k=1

j
k−1,m

(r)

])
R(r) dV

= E−1
∫
V

(j
0,n
(r)[H × j

m
(r)])R(r) dV. (22)

In [4] it was shown that the Hall coefficient fork = 1 can be obtained without calculating
the current density in the presence of a magnetic field

Reff(p) =
〈j

1
(r)〉

(σ eff
x (p)σ

eff
y (p)UxUyHL)

=
∫
V

(j
0
(r)[j ′

0
(r)×H ])R(r) dV

σ eff
x (p)σ

eff
y (p)UxUyLH

(23)

wherej
0
(r) andj ′

0
(r) are the current density obtained from the equation∇(σ (r)∇U(r)) = 0

with boundary conditions along thex-axis for a potential differenceUx and along they-axis
for a potential differenceUy , σ(r) andR(r) are the local values of the conductivity and the
Hall coefficient,σ eff

x (p) andσ eff
y (p) are the effective conductivities along these axes andL

is the length of the sample along the magnetic fieldH.
When we consider this solution we can calculate two values:
(i) the effective Hall potential drop when the Hall circuit is disrupted;
(ii) the effective Hall current when it is not disrupted.
Obviously, the effective Hall potential drop is equal to the sum of the Lorentz battery

EL(r) on each point of the sample. The random distribution of the values and orientations
of the Lorentz battery can be obtained by using the Ohmic density of the currentjx0 (r),
calculated by iteration of the Kirchhoff system of equations, with boundary conditions
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applied, for example, to thex-axis. In this case the Lorentz battery is equal to the value
EL(r) = R(r)jx0(r) ×H. There are difficulties in summing up these batteries because of
their random orientation, and not because of their random values. In order to overcome
these difficulties, it is necessary to change the vector field of the Lorentz battery to the
field of Hall current density outside Hall circuit. As shown in [4], by using the well known
reciprocity theorem, the Hall current density in an outside Hall circuit (which came from the
Lorentz battery on each point of the sample) is equal to a subintegral value in equation (23).
One may summarize it as an integral form (23) because each part of the Hall current density
is parallel in an outside circuit.

It is important to understand that our method divides the full Hall current density in the
sample into two parts. The first part of the current, which is proportional toj

y

0 (r), has a
path to the boundary along a percolation cluster, while the second part does not have this
possibility. One must recalculate the Kirchhoff system of equations, with the other boundary
conditions applied to they-axis in the event that a magnetic field is applied along thez-axis.
As a result one obtains the current densityjy0 (r). By using integral (5) in the zero step of
approximation(k = 0), one obtains the first part of the Hall current, which has a path to
the Hall contacts, becausejy0 (r) was put through the Hall contacts. One may claim that
this is the exact result of the zero step of the approximation, because the second part was
influenced by only the changes in the Ohmic density of the currents. Therefore it needs the
recurrence formulae (20) for all responses of a magnetic field. Our Green’s function method
[4] corresponds, mathematically, to the precise summarization of the Lorentz batteries, but
not to the new kind of the effective medium approximations.

However, the theory cannot be completed without an answer to a very important
question. One needs to find the condition when the solution of equation (7) converges.
The recurrence form of the solution equation (20) enables us to obtain an exact answer for
this question.

One can rewrite equation (20) as an inequality for the first-order solution∫
jy

1
(r) dV = E−1

∫
(jx

0
(r)[H × jy

0
(r)])R(r) dV

=
∫
([jx

0
(r)×H ]jy

0
(r))R(r) dV < max

( |[jx
0
(r)×H ]R(r)|

E

)∫
|jy

0
(r)| dV.

(24)

The second-order solution gives the inequality∫
j
y

2 (r) dV =
∫
([jx

1
(r)×H ]jy0 (r)R(r) dV

< max

( |[jx
0
(r)×H ]R(r)|

E

)2 ∫
|jy

0
(r)| dV. (25)

The common casek is∫
j
y

k (r) dV =
∫
([jx

0
(r)×H ]jy

k−1
(r))R(r) dV

< max

( |[jx
0
(r)×H ]R(r)|

E

)k ∫
|jy0 (r)| dV. (26)
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In the magnetic field if the first term in the inequality

max

( |[jx
0
(r)×H ]R(r)|

E

)
< 1 (27)

then〈jyk (r)〉 → 0 ask→±∞ and solution (20) is converged.

4. The new equations for thermopower

There is literature [21–25] on the thermopower of inhomogeneous aggregates, consisting
of two or more distinct phases, separated by sharp boundaries. It is obvious that the
thermoelectric properties of homogeneous materials are superior to those of inhomogeneous
composites. This is suggested by the calculation of the thermoelectrical properties of a
composite rod constructed of two pieces of dissimilar material in parallel or in series [21].
There may be an application of such composites: for example, a second phase might be
introduced to improve the mechanical properties of the material. The theory that has been
discussed may assist the interpretation of experiments on such materials [23].

With the Green’s function technique used in the appendix, one can obtain the Seebeck
coefficient constructed by the perturbation theory. This leads, again [4], to a recurrent
system of equations, assuming that the media can be described by local thermoconductivity
k(r), temperatureT (r), and the Seebeck coefficientα(r). It is possible to write the system
of equations for the thermocurrentj(r) and thermal fluxu(r) as follows

j(r) = σ(r)∇ϕ(r)− σ(r)α(r)∇T (r) (28a)

u(r) = κ(r)∇T (r)− σ(r)α(r)T (r)∇ϕ(r). (28b)

Suppose that the opposite edges of the sample are electrically connected and the
thermoelectric current is measured. The temperatures of the edges are held atT1 and
T2. The boundary conditions forϕ(r) andT (r) are:

ϕ(r)r∈B = 0 T (r)r∈B = (T2− T1)xm

L
. (29)

In the zeroth-order sequence forα we can neglect the second term of equation (1b) and
obtain:

j
0
(r) = σ(r)∇ϕ0(r)− σ(r)α(r)∇T0(r) (30a)

and

u0(r) = κ(r)∇T0(r). (30b)

Now we can write a sequence forα with valuesT (r) andu(r):

T (r) = T0(r)+ T1(r)+ T2(r)+ · · ·
u(r) = u0(r)+ u1(r)+ u2(r)+ · · · .

(31)

Substituting sequences (31) into systems (28), one can obtain equations of all the orders
of α. Equation (30b), for the temperature distribution, is similar to that of the electric
current with conductivityκ(r). On a lattice it can be solved by integrating Kirchhoff’s
equations.

In first order, one obtains:

j
1
(r) = σ(r)∇ϕ1(r)− α(r)σ (r)∇T0(r)

u1(r) = κ(r)∇T1(r)+ α(r)σ (r)T0(r)∇ϕ1(r).
(32)
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Therefore, the boundary condition, with potential equal to zero can be rewritten as:

ϕ(r)r∈B = 0⇒ ϕ0(r) ≡ 0

thus the second term in equation (3b) equals zero (also in the first-order equation (32)) and
T1(r) = T0(r). The zero term in a row forα equals the first one, and our task is now to
find the second term.

The equation for the second term is as follows

j
2
(r) = σ(r)∇ϕ2(r)+ α(r)σ (r)∇T1(r) (33a)

u2(r) = κ(r)∇T2(r)+ α(r)σ (r)T0(r)∇ϕ1(r)+ α(r)σ (r)T1(r)∇ϕ0(r). (33b)

The last term equals zero, because∇ϕ0(r) = 0. From the equation∇u2(r) = 0, one can
obtainT2(r) as a function ofT1(r) = T0(r) andϕ1(r)

∇(κ(r)∇T2(r)) = ∇(α(r)σ (r)T0(r)∇ϕ1(r))

T2(r) =
∫
G(r, r ′)∇(α(r ′)σ (r ′)T0(r

′)∇ϕ1(r
′)) dV ′.

(34)

Using row (28a), one obtains the equation for thermocurrent density in the form:

j
1
(r) = σ(r)∇ϕ1(r)− α(r)σ (r)∇T0(r)

j
2
(r) = σ(r)∇ϕ2(r)− α(r)σ (r)∇T1(r)

...

j
k
(r) = σ(r)∇ϕk(r)− α(r)σ (r)∇Tk−1(r).

(35)

Since∇jk(r) = 0 and using the Green’s function, one can calculate the potential:

ϕk(r) =
∫
G(r, r ′)∇(σ (r ′)α(r ′)∇Tk−1(r

′)) dV ′. (36)

Using (A7) one can obtain the mean value of thermocurrent

〈jk(r)〉 =
∫
α(r)∇Tk−1(r)

∫
σ(r)σ (r ′)∇∇′G(r, r ′) dV dV ′ −

∫
α(r)σ (r)∇Tk−1(r) dV

= E−1
∫
α(r)(j0(r)∇Tk−1(r)) dV. (37)

Thermocurrent〈j1(r)〉 can be obtained from temperatureT0(r), which is easy to calculate
from Kirchoff’s system of equations.

Thermocurrent〈j2(r)〉 can be calculated by usingT1(r), but T1(r) = T0(r) and the
first-order result is equal to the zeroth-order result.

The third order in many physical situations is very small, but in the particular cases it
can be important. Formula (37) offers the possibility of calculating the contributions of all
orders ofα to thermocurrent from the temperature distribution.

5. Numerical analysis of the Hall and Seebeck coefficients and the effective medium
theory

On the basis of the formulae obtained, a computer program was created and the Hall and
Seebeck coefficient was calculated for a three-dimensional lattice consisting of 25×25×25
sites.
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Using a random Gaussian potential model and potential levelW0 one can calculate the
probability

p =
∫ W0

−∞
F(W) dW W(r) =

∫
K(r − r ′)f (r ′) dr ′ (38)

for the conductivityσ1, the Hall coefficientR1, the thermal conductivityk1 and the Seebeck
coefficient α1 of the component 1 atW > W0 and the probability 1− p for those
of the component 2(σ2, R2, k2, α2). f (r) is a random Gaussian function with correlator
f (r)f (r ′) = δ(r − r ′) andK(r) = exp(r/r0) wherer0 is a correlative radius. This model
seems to be better than site percolation for continuum percolation and for comparison with
experiment.

In order to calculate the Hall coefficient, the following algorithm and boundary
conditions have been assumed.

(1) Periodic boundary conditions are assumed for all surfaces of the cube without
contacts:

(i) the surface passes through the sites of the lattice; (ii) the cube is mirrored at the
boundary.

(2) The electrical contacts are situated on the surfacesx = 0 andx = L, and their
potentials are assumed to beUx=0 = 0 andUx=L = 1. The iteration formula for calculating
the potential connected with each given site, follows from Kirchhoff’s current law. After the
iteration procedure has ended, every site can be associated with three current components
jx , jy andjz, which are calculated as a half sum of currents in the bonds adjoining this site.

(3) The procedure for calculatingσ eff
y (p) is the same as in (2), but the contacts are

situated on the surfacesy = 0 andy = L, and every site can now be associated with three
current components,j1

x , j1
y andj1

z .
(4) The productsjxj1

y and−jyj1
x , multiplied by the Hall coefficientsR1 or R2 at these

points, are summed for every site of the lattice.
The procedure for calculating the Seebeck coefficient is identical.
The dependence of conductivity and Hall and Seebeck coefficients onp and for various

ratios of σ1/σ2, R1/R2, and k1/k2 is illustrated in figures 1–5. Figure 1 illustrates the
concentration dependence conductivity and the Hall coefficient for various ratiosσ1/σ2

and R1/R2. In figure 1 the behaviour of the percolation probabilityP(p) is shown by
the heavy curve. There is an interesting feature in the behaviour of conductivity and the
reciprocal Hall coefficient which can be seen in figure 1. The maximum distance between
the conductivities and reciprocal coefficients curves is denoted byA. This distance is
a function of the conductivity ratio. Atσ2/σ1 > 10−5, the curves differ greatly andA
increases to its maximum value. In this case quantitative agreement is achieved for the
high-density impurity conductor NaxWO3 [28], for which the reciprocal Hall coefficient is
observed to correspond withP(p). When the ratioσ2/σ1 rises,A decreases smoothly to 0
at σ2/σ1 > 0.5. This behaviour of the distanceA can be used to estimate the conductivity
ratio of the experimental data constituents in heterogeneous materials.

Cohen and Jortner [10] generalized the effective medium theory (EMT) to treat situations
in which the conductivity is a tensor quantity everywhere, as must occur in the presence of a
magnetic field and then applied to several liquid semiconducting systems. Their analysis was
generalized for thermopower by Webmanet al [12] for a random mixture of two components,
where conductivityσ1, thermoconductivityk1 and Hall and Seebeck coefficientsR1 andα1

occupy a volume fractionp andσ2, k2, R2, andα2 occupy a volume fraction 1− p.
Let us compare the results predicted by EMT with our calculation. The broken curves in

figures 2–4 correspond to the data obtained by Cohen and Jortner’s formulae. As Kirkpatrick
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Figure 1. The effective conductivity (the heavy curves with the circles) and the effective
reciprocal Hall coefficient (dotted curves with the circles) for the Hall mobilityµ = µ2/µ1 = 1
and the different valuesσ = σ2/σ1. The percolation probabilityP(p) is presented by the heavy
curve.

Figure 2. The reciprocal Hall coefficient for the different
valuesσ = σ2/σ1 andR = R2/R1. Predictions of EMT
are shown by the broken curves.

[9] pointed out, one can obtain an accurate analytical EMT calculation of conductivity
problem outside the critical region. The numerical results presented show that the EMT is
also accurate for the Hall and Seebeck coefficients and that the critical region in which it
fails (see figure 3) covers only a modes range of concentrations.

The best formula for thermopower, which gives the correct value of the threshold, was
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Figure 3. The reciprocal Hall coefficient for the different valuesσ = σ2/σ1 andR = R2/R1.
Predictions of EMT are shown by the broken curves and chain curves.

Figure 4. The effective Seebeck coefficient for the different valuesσ = σ2/σ1 andχ = k2/k1.
Predictions of EMT are shown by the broken curves.

presented by Straley [26] and Halpern [27]

αeff(p) = (α2− α1)[(k
eff(p)/σ eff(p)− k1/σ1)/(k2/σ2− k1/σ1)] + α1. (39)

The physical meaning of this formula atk1
∼= k2, where the formula becomes strong, is

that the Seebeck coefficient is proportional to the difference between the effective resistance
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Figure 5. The effective Seebeck coefficient for
(A) σ1/σ2 = k1/k2 = 105; (B) σ1/σ2 = 105;
k1/k2 = 1.001.

and the resistance of component 1. In this particular case the critical exponent of the Seebeck
coefficient is equal to the conductivity exponentt and therefore both the thermopower
and the conductivity belong to the same universality class. Formula (39) was verified by
a computer calculation using integrals (37). Our calculation shows that this formula is
extremely accurate for both two- and three-dimensional spaces, and for both sides of the
threshold but does not work for the ratiok1/k2 � 1, whereas for thek1/σ1 = k2/σ2 it
becomes meaningless, since both the numerator and the denominator become equal to zero.
Figure 5 presents the two different curves with different critical exponents for both extreme
cases. All other cases lie in short intervals between them. When the ratiok1/k2 � 1, the
‘special’ nodes appear and the thermopower belongs to the new universality class.

6. An upper bound of the critical Hall conductivity exponent for the contributions of
all orders to the current density in a magnetic field

An upper bound of the critical Hall conductivity exponent for the contributions of all orders
of the Hall effect to the current density in a magnetic field can be obtained by using both
equation (23) and equation (27).

As follows from numerical calculation of equation (23) [4], the Hall conductivityGeff(p)

critical exponent for the case whenR1/R2 → 1 can be presented for both sides of the
threshold by the formula

Geff(p) ∝ |p − pc|τ τ1 = 2t − g g = 0.6 (40)

wheret is the conductivity critical exponent andg is the Hall coefficient critical exponent
[21].

In order to calculate the upper bound of the critical Halls conductivity exponentτk, one
needs to use equation (27) related to〈f yk (r)〉, which leads to the formula

τk 6 2t − g. (41)
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Our numerical calculations have shown that one can obtain a new universality class for
the Hall coefficient critical exponent for both sides of the threshold whenR2/R1 → 1. In
the opposite case, the situation is more complicated. Forp > pc the former case holds
but for p < pc the Hall coefficient and conductivity belong to the same universality class
τ1 = 2t if R2� R1.

7. Conclusion

We have developed exact analytical formulae for the mentioned kinetic coefficients, using
the Green’s function technique. The formulae produced by this method play the same role
for the calculations of kinetic coefficients as the Kirchhoff system of equations does for
conductivity, therefore the numerous errors of the critical exponents calculations lie in the
same error bar. These formulae give contribution of all orders of the Hall effect to the
current density.

When the ratiok1/k2� 1, the ‘special’ nodes appear and the thermopower belongs to
the new universality class.
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Appendix

Consider a cubic sample with side lengthsLxm , m = 1, 2, 3 with an applied electric field
E along thexm-axis. ϕm(r) denotes the electrical potential andjm(r) denotes the current
density.

For the boundary condition of the potential one obtains:

ϕ0,m(r)r∈B = Exm (A1)

whereB is the boundary of the sample.
Now we introduce the Green’s functionG(r, r ′) by the equation:

∇n(σ (r)∇nG(r, r ′)) = δ3(r − r ′) (A2)

with the boundary condition

G(r, r ′)r∈B = 0. (A3)

Summation over repeated indices is implied. The Green’s function method can be
applied to the potential with zero boundary conditions. For this purpose one can introduce
a new potentialϕ′0,m(r) as:

ϕ′0,m(r) = ϕ0,m(r)− Exm where ϕ′0,m(r)r∈B = 0

since∇njn0,m(r) = 0, ∇n(σ (r)∇nϕ0,m(r)) = 0.
This can be rewritten as:

∇n(σ (r)∇nϕ′0,m(r)) = −∇n(σ (r)∇n(Exm)). (A4)
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Using the Green’s function one can find a solution forϕ′0,m(r) and simultaneously, for
ϕ0,m(r)

ϕ0,m(r) = Exm + ϕ′0,m(r) = Exm +
∫
G(r, r ′)∇′(σ (r ′)∇′(Ex ′m)) dV ′

= Exm − E
∫
σ(r ′)∇′mG(r, r ′) dV ′ (A5)

and since∇n(Exm) = Eδnm, for jn0,m(r) one obtains

jn0,m(r) = σ(r)∇nϕ0,m(r) = Eσ(r)δnm + E
∫
σ(r)σ (r ′)∇n∇′mG(r, r ′) dV ′. (A6)

For further application, the integral may be expressed in another form

E

∫
σ(r)σ (r ′)∇n∇′mG(r, r ′) dV ′ = E−1jn0,m(r)− σ(r)δnm. (A7)

This formula allows integrating multiplication of the gradient of the Green’s function
at two local conductivities. The result is the total current to zeroth order.
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